Fast and Simple Method for Prediction of the Micromechanical Parameters and Macromechanical Properties of Composite Materials
نویسندگان
چکیده
The method described in the present work was assessed through the production of composite materials made of polypropylene reinforced with chemical thermomechanical pulp of hemp core fibers. Composite materials were obtained by extrusion and injection molding, and by the addition of a coupling agent to ensure a good interphase between fiber and matrix. In all cases, the composite materials were considered as semi-aligned reinforced. Tensile strength was selected as a representative parameter and was studied by the Kelly-Tyson model. Since the original Kelly-Tyson equation was formulated for fully aligned reinforced composite materials, the present work uses a modified one, where the orientation factor is included. The fiber length and diameter distribution were determined by the extraction of the fibers from the composite materials and analyzed in a MorFi equipment. The orientation factor was calculated taking into account the predicted tensile strength for fully aligned composites and the experimental value from the semi-aligned ones. The interfacial shear strength was estimated through Tresca and Von Mises criteria. The values obtained through the simulation were compared to the experimental ones, showing a good correlation between the mathematical model and the experimental part.
منابع مشابه
Micromechanical Parameters from Macromechanical Measurements on Glass Reinforced Polypropylene
In recent years many elegant techniques have been developed for the quantification of composite micromechanical parameters. Unfortunately most of these techniques have found little enthusiastic support in the industrial product development environment. We have developed an improved method for obtaining the micromechanical parameters, interfacial shear strength, fibre orientation factor, and fib...
متن کاملA Micro–Macro Approach to Modeling Progressive Damage in Composite Structures
Modeling progressive damage in composite materials and structures poses considerable challenges because damage is, in general, complex and involves multiple modes such as delamination, transverse cracking, fiber breakage, fiber pullout, etc. Clearly, damage in composites can be investigated at different length scales, ranging from the micromechanical to the macromechanical specimen and structur...
متن کاملNonlinear Viscoelastic Analysis of Laminated Composite Plates – A Multi Scale Approach
Laminated composite plates are widely used in modern structures. Resins of composites are almost made of polymers which show time dependent and and in some cases stress dependent behaviour. In this paper, a laminated composite plate is analysed using a multiscale method. At first, material properties of a lamina is obtained using an analytical micromechanical approach called simplified unit cel...
متن کاملStiffness Prediction of Beech Wood Flour Polypropylene Composite by using Proper Fiber Orientation Distribution Function
One of the most famous methods to predict the stiffness of short fiber composites is micromechanical modeling. In this study, a Representative Volume Element (RVE) of a beech wood flour natural composite has been designed and the orientation averaging approach has been utilized to predict its stiffness tensor. The novelty of this work is in finding the proper fiber orientation distribution func...
متن کاملApplication of soil properties, auxiliary parameters, and their combination for prediction of soil classes using decision tree model
Soil classification systems are very useful for a simple and fast summarization of soil properties. These systems indicate the method for data summarization and facilitate connections among researchers, engineers, and other users. One of the practical systems for soil classification is Soil Taxonomy (ST). As determining soil classes for an entire area is expensive, time-consuming, and almost ...
متن کامل